Visualization experiment to investigate capillary barrier performance in the context of a Yucca Mountain emplacement drift

J Contam Hydrol. 2003 Apr-May:62-63:287-301. doi: 10.1016/s0169-7722(02)00164-x.

Abstract

The use of capillary barriers as engineered backfill systems to divert water away from radioactive waste potentially stored in a Yucca Mountain emplacement drift is investigated. We designed and conducted a flow visualization experiment to investigate capillary barrier performance in this context. A two-dimensional, thin slab, test system replicated the physical emplacement drift to one-quarter scale (1.4-m diameter) and included the simulated drift wall, waste canister, pedestal, capillary barrier backfill, and host-rock fracture system. Water was supplied at the top of the simulated drift and allowed to discharge by way of wicks located along the left wall of the cell (simulated fractures) or by a gravity drain at the bottom of the right side (simulated impermeable rock with floor drain). Photographs captured the migration of water and a blue dye tracer within the system, analytical balances measured the mass balance of water, while tensiometers measured the capillary pressure at numerous locations. Of particular concern to this test was the drainage of the capillary barrier, which terminates against the drift wall. We found that while the simulated fractures (left side) and drain (right side) each influenced the performance of the capillary barrier at early time, they had little differential affect at later times. Also of concern was the small disparity in capillary properties between the fine and coarse layer (limited by the need of a fine-grained material that would not filter into the coarse layer under dry conditions). While the capillary barrier was able to divert the majority of flow toward the edges of the system and away from the simulated waste canister, the barrier did not preclude flow in the coarse layer, which was noted to be visually wet next to the waste canister on day 92 and was continuing to take on water at termination on day 112.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Engineering
  • Geological Phenomena
  • Geology
  • Models, Theoretical*
  • Nevada
  • Permeability
  • Radioactive Waste*
  • Refuse Disposal*
  • Water Movements*

Substances

  • Radioactive Waste