Analysis of a dehydrin encoding gene and its phylogenetic utility in Helianthus

Theor Appl Genet. 2003 Jul;107(2):316-25. doi: 10.1007/s00122-003-1249-5. Epub 2003 Apr 23.

Abstract

Dehydrins are ubiquitous plant proteins, synthesized in late stages of plant embryo development and following any environmental stress involving dehydration. With the aim to study the evolution of such a stress-responsive gene within Helianthus and to test the possibility of using this gene for phylogenetic studies, fragments of the same dehydrin gene were isolated by PCR and sequenced in 16 wild Helianthus species or subspecies. All isolated sequences included the typical dehydrin domains (Y, S and K), a portion of 3'-UTR and an intron, inserted in the same position within the S domain-encoding region. The number of nucleotide substitutions (both synonymous and nonsynonymous) was calculated keeping separate the different gene regions, and differences occur even among coding domains, indicating that evolutionary constraints act differently on each region. The occurrence of indels and/or insertions was also observed. At the deduced protein level, the calculation of isoelectric point, molecular weight and the percentage of alpha-helix showed a diversification of biochemical properties of this protein between annual and perennial Helianthus species. Phylogenetic trees were built by the maximum-likelihood, maximum-parsimony, and neighbor-joining methods. In all cases the same topology was observed; perennial and annual species form a supported clade, and H. annuus was separated from the other annuals and from perennials. These data support the use of this stress-responsive gene to study the phylogeny of Helianthus.

Publication types

  • Comparative Study

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Blotting, Southern
  • Cluster Analysis
  • Evolution, Molecular*
  • Heat-Shock Proteins / genetics
  • Helianthus / genetics*
  • Likelihood Functions
  • Models, Genetic
  • Molecular Sequence Data
  • Phylogeny*
  • Plant Proteins / genetics*
  • Sequence Alignment
  • Sequence Analysis, DNA

Substances

  • Heat-Shock Proteins
  • Plant Proteins
  • dehydrin proteins, plant