Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres

J Am Chem Soc. 2003 Apr 30;125(17):4966-7. doi: 10.1021/ja0294459.

Abstract

Manganese oxide hollow nanospheres were prepared using a straightforward, template-free synthesis. The resulting material was mesoporous, crystalline, and of uniform diameter. The nanospheres were characterized by XRD, HR-SEM, and HR-TEM, and pore size distributions were calculated from nitrogen desorption. Unlike previous synthesis methods that use an inorganic template, this procedure requires no separation after synthesis to remove the template. The nanospheres are composed of hexagonal gamma-manganese oxide flakes and are approximately 400 nm in diameter. gamma-MnO2 is composed of a ramsdellite matrix (1 x 2 tunnels) with randomly distributed microdomains of pyrolusite (1 x 1 tunnels). These materials could have applications as cathodic battery materials, oxidation catalysts, catalyst supports, and adsorbents for pollutants.