Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: a time-resolved fluorescence depolarization study

J Mol Biol. 2003 May 2;328(3):705-19. doi: 10.1016/s0022-2836(03)00326-7.

Abstract

The conformation of the AB-loop and EF-loop of bacteriorhodopsin and of the fourth cytoplasmic loop (helix VIII) of bovine rhodopsin were assessed by a combination of time-resolved fluorescence depolarization and site-directed fluorescence labeling. The fluorescence anisotropy decays were measured employing a tunable Ti:sapphire laser/microchannel plate based single-photon counting apparatus with picosecond time resolution. This method allows measurement of the diffusional dynamics of the loops directly on a nanosecond time-scale. We implemented the method to study model peptides and two-helix systems representing sequences of bacteriorhodopsin. Thus, we systematically analyzed the anisotropic behavior of four different fluorescent dyes covalently bound to a single cysteine residue on the protein surface and assigned the anisotropy decay components to the modes of motion of the protein and its segments. We have identified two mechanisms of loop conformational changes in the functionally intact proteins bacteriorhodopsin and bovine rhodopsin. First, we found a surface potential-dependent transition between two conformational states of the EF-loop of bacteriorhodopsin, detected with the fluorescent dye bound to position 160. A transition between the two conformational states at 150mM KCl and 20 degrees C requires a surface potential change that corresponds to Deltasigma approximately -1.0e(-)/bacteriorhodopsin molecule. We suggest, that the surface potential-based switch of the EF-loop is the missing link between the movement of helix F and the transient surface potential change detected during the photocycle of bacteriorhodopsin. Second, in the visual pigment rhodopsin, with the fluorescent dye bound to position 316, a particularly striking pH-dependent conformational change of the fourth loop on the cytoplasmic surface was analyzed. The loop mobility increased from pH 5 to 8. The midpoint of this transition is at pH 6.2 and correlates with the midpoint of the pH-dependent equilibrium between the active metarhodopsin II and the inactive metarhodopsin I state.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anisotropy
  • Bacteriorhodopsins / chemistry*
  • Cattle
  • Fluorescent Dyes
  • Hydrogen-Ion Concentration
  • Kinetics
  • Membrane Proteins / chemistry
  • Models, Molecular
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Rhodopsin / chemistry*
  • Spectrometry, Fluorescence
  • Temperature

Substances

  • Fluorescent Dyes
  • Membrane Proteins
  • Bacteriorhodopsins
  • Rhodopsin