Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest

Tree Physiol. 1999 Aug;19(10):673-679. doi: 10.1093/treephys/19.10.673.

Abstract

Seasonal differences in phenology between coniferous and deciduous tree species need to be considered when developing models to estimate CO(2) exchange in temperate forest ecosystems. Because seasonal variations in CO(2) flux in temperate forests are closely correlated with plant phenology, we quantified the phenology of forest species in a multilayered forest with patches of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L.) in Brasschaat, Belgium. A scaling-up modeling approach was developed to simulate reflectance at the leaf and canopy scales over a one-year cycle. Chlorophyll concentration, water content, specific leaf area and leaf area index of the forest species were measured throughout an entire year (1997). Scaling-up from the leaf to canopy was achieved by linking the PROSPECT and SAIL models. The result is the annual progression of the fraction of absorbed photosynthetically active radiation (fAPAR) in a 1 km(2) forest area, which can be directly related to high-resolution, remotely sensed data.