Bilinear diffusion quantum Monte Carlo methods

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026708. doi: 10.1103/PhysRevE.67.026708. Epub 2003 Feb 27.

Abstract

The standard method of quantum Monte Carlo for the solution of the Schrödinger equation in configuration space can be described quite generally as devising a random walk that generates-at least asymptotically-populations of random walkers whose probability density is proportional to the wave function of the system being studied. While, in principle, the energy eigenvalue of the Hamiltonian can be calculated with high accuracy, estimators of operators that do not commute the Hamiltonian cannot. Bilinear quantum Monte Carlo (BQMC) is an alternative in which the square of the wave function is sampled in a somewhat indirect way. More specifically, one uses a pair of walkers at positions x and y and introduces stochastic dynamics to sample phi(i)(x)t(x,y)phi(j)(y), where phi(i)(x) and phi(j)(y) are eigenfunctions of (possibly different) Hamiltonians, and t(x,y) is a kernel that correlates positions x and y. Using different Hamiltonians permits the accurate computation of small energy differences. We review the conceptual basis of BQMC, discuss qualitatively and analytically the problem of the fluctuations in the branching, and present partial solutions to that problem. Finally we exhibit numerical results for some model systems including harmonic oscillators and the hydrogen and helium atoms. Further research will be necessary to make this a practical and generally applicable scheme.