Assessment of the effect of antiseizure drugs on the labeling process of red blood cells and plasma proteins with technetium-99m

Cell Mol Biol (Noisy-le-grand). 2002 Nov;48(7):793-801.

Abstract

It is estimated that about 2.5 million people only in the United States are affected by epilepsy. Labelled red blood cells (RBC) and plasma proteins (PP) are used for several evaluations in nuclear medicine and drugs affecting those labelings have previously been described. The aim of this study was to evaluate whether the most popular antiseizure drugs interfere with the 99mTc labeling process of RBC and PP. Heparinized blood withdrawn from Wistar rats was incubated with phenobarbital (0.2, 2, 20, 200, 2,000 microg/ml), phenytoin (0.15, 1.5, 15, 150, 1,500 microg/ml), carbamazepine (0.7, 7, 70 microg/ml), clonazepam (0.5, 5, 50, 500 microg/ml) or valproic acid (0.5, 5, 50, 500 microg/ml) for I hr. Stannous chloride (SnCl2), in two different concentrations (0.012 or 1.2 microg/ml) and 99mTc were added. Plasma and cellular fractions were isolated by centrifugation, soluble and insoluble fractions were separated by trichloroacetic acid precipitation. The percentage of radioactivity was calculated for each fraction. Statistical analysis was performed with ANOVA and Dunnet tests. The analysis of the results has shown that phenobarbital (2,000 microg/ml) and clonazepam (50 microg/ml) significantly have reduced the RBC labeling efficiency when it was used the optimal SnCl2 concentration (1.2 microg/ml) and clonazepam (5, 50 microg/ml) has significantly decreased the PP labeling efficiency with 99mTc. Phenytoin (1,500 microg/ml) has decreased the RBC labeling efficiency when the experiments were carried out with a small SnCl2 concentration (0.012 microg/ml). We can suggest that with this in vitro assay, at the therapeutic level of phenytoin, phenobarbital, carbamazepine and valproic acid will not interfere on the 99mTc labeling process of RBC. Interference is displayed at higher phenobarbital concentrations (2,000 microg/ml). However, humans do not tolerate this concentration. On the other hand, a decreased RBC and PP labeling efficiency with 99mTc may be expected for clonazepam at therapeutic levels.

MeSH terms

  • Animals
  • Anticonvulsants / adverse effects*
  • Blood Proteins / drug effects*
  • Blood Proteins / metabolism*
  • Clonazepam / adverse effects
  • Erythrocytes / diagnostic imaging*
  • Erythrocytes / drug effects*
  • Erythrocytes / metabolism
  • Humans
  • In Vitro Techniques
  • Radionuclide Imaging
  • Radiopharmaceuticals / blood
  • Rats
  • Rats, Wistar
  • Technetium / blood*

Substances

  • Anticonvulsants
  • Blood Proteins
  • Radiopharmaceuticals
  • Clonazepam
  • Technetium