Pathobiochemistry of nephrotic syndrome

Adv Clin Chem. 2003:37:173-218. doi: 10.1016/s0065-2423(03)37009-x.

Abstract

Nephrotic syndrome is a clinical and laboratory syndrome caused by the increased permeability of the glomerular capillary wall for macromolecules. Nephrotic syndrome is a potentially life-threatening state and persistent nephrotic syndrome has a poor prognosis with a high risk of progression to end-stage renal failure and a high risk of cardiovascular complications due to severe hyperlipidemia. Pathogenesis of increased glomerular permeability in different glomerular diseases has not been fully elucidated. Recently, identification of the mutated genes for some podocyte proteins (nephrin, podocin, alpha-actinin-4) in rare familial forms of nephrotic syndrome shed has new light on the molecular mechanisms of glomerular permselectivity. Gradually it becomes apparent that sporadic mutations of podocyte proteins (e.g., podocin) may be present even in some patients with acquired nephrotic syndrome. Expression of other podocyte proteins may change during the course of experimental nephrotic syndrome, possibly as a response to podocyte damage resulting either in apoptosis or stimulation of proliferation and some form of repair, including glomerular sclerosis. Better understanding of these mechanisms could clearly also have therapeutic implications. Glomerular permeability factors are believed to play a role in some noninflammatory glomerular diseases, mainly minimal change disease and focal segmental glomerulosclerosis, but their molecular identification remains elusive, possibly due to the nonhomogeneous nature of the underlying diseases. As an example, focal segmental glomerulosclerosis possibly can be caused by the sporadic mutation of some genes for podocyte proteins, increased production of glomerular permeability factor (possibly by T lymphocytes), or the loss of inhibitors of glomerular permeability factors in nephrotic urine. Clearly the factors causing increased glomerular permeability and factors perpetuating glomerular sclerosis are not necessarily the same. Proteinuria does not seem to be only the consequence of glomerular damage, but it may possibly cause tubular damage and initiate interstitial fibrosis and thus contribute to the progression of chronic renal failure in proteinuric renal diseases. Recent insights into the mechanisms of tubular protein reabsorption may give new tools for preventing the progression of chronic renal disease. Cubilin inhibitors could potentially ameliorate tubular and interstitial damage in patients with heavy proteinuria refractory to treatment. Nephrotic hyperlipidemia is accompanied with increased risk of cardiovascular complications and should be treated in all patients with persistent nephrotic syndrome. The putative positive effect of hypolipidemic drugs (namely statins) on the cardiovascular risk and potentially also on the rate of progression of chronic renal failure remains to be demonstrated in prospective controlled studies. Recent progress in understanding podocyte biology in rare inherited glomerular diseases gives the chance to understand in the near future the molecular pathogenesis of increased glomerular permeability in the much more common acquired forms of nephrotic syndrome.

Publication types

  • Review

MeSH terms

  • Animals
  • Biomarkers
  • Capillaries / metabolism
  • Capillaries / pathology
  • Humans
  • Kidney Glomerulus / metabolism
  • Kidney Glomerulus / pathology
  • Nephrotic Syndrome / diagnosis
  • Nephrotic Syndrome / metabolism
  • Nephrotic Syndrome / pathology*
  • Nephrotic Syndrome / therapy

Substances

  • Biomarkers