Pharmacological interference with dimerization of human neuronal nitric-oxide synthase expressed in adenovirus-infected DLD-1 cells

Mol Pharmacol. 2003 Mar;63(3):682-9. doi: 10.1124/mol.63.3.682.

Abstract

A recombinant adenovirus containing the cDNA of human neuronal nitric-oxide synthase (nNOS) was constructed to characterize the interaction of nNOS with N-[(1,3-benzodioxol-5-yl)methyl]-1-[2-(1H-imidazole-1-yl)pyrimidin-4-yl]-4-(methoxycarbonyl)-piperazine-2-acetamide (BBS-1), a potent inhibitor of inducible NOS dimerization [Proc Natl Acad Sci USA 97:1506-1511, 2000]. BBS-1 inhibited de novo expression of nNOS activity in virus-infected cells at a half-maximal concentration (IC(50)) of 40 +/- 10 nM in a reversible manner. Low-temperature gel electrophoresis showed that BBS-1 attenuated the formation of SDS-resistant nNOS dimers with an IC(50) of 22 +/- 5.2 nM. Enzyme inhibition progressively decreased with increasing time of addition after infection. BBS-1 did not significantly inhibit dimeric nNOS activity (IC(50) > 1 mM). Long-term incubation with BBS-1 of human embryonic kidney cells stably transfected with nNOS or endothelial NOS revealed a slow time- and concentration-dependent decrease of NOS activity with half-lives of 30 and 43 h and IC(50) values of 210 +/- 30 nM and 12 +/- 0.5 microM, respectively. These results establish that BBS-1 interferes with the assembly of active nNOS dimers during protein expression. Slow inactivation of constitutively expressed NOS in intact cells may reflect protein degradation and interference of BBS-1 with the de novo synthesis of functionally active NOS dimers. As time-dependent inhibitors of NOS dimerization, BBS-1 and related compounds provide a promising strategy to develop a new class of selective and clinically useful NOS inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae / physiology
  • Animals
  • COS Cells
  • Cells, Cultured / virology
  • Dimerization
  • Humans
  • Nitric Oxide Synthase / chemistry
  • Nitric Oxide Synthase / metabolism*
  • Nitric Oxide Synthase Type I

Substances

  • NOS1 protein, human
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type I