Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method

Chemosphere. 2003 Apr;51(4):227-35. doi: 10.1016/S0045-6535(02)00836-6.

Abstract

The degradation of 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as chlorophenoxy herbicides, as well as of 3,6-dichloro-2-methoxybenzoic acid (dicamba) as chlorobenzoic herbicide, has been studied by peroxi-coagulation. This electrochemical method yields a very effective depollution of all compounds in acidic aqueous medium of pH 3.0 working under pH regulation, since they are oxidized with hydroxyl radicals produced from Fenton's reaction between Fe(2+) and H(2)O(2) generated by the corresponding Fe anode and O(2)-diffusion cathode. Their products can then be removed by mineralization or coagulation with the Fe(OH)(3) precipitate formed. Both degradative paths compete at low currents, but coagulation predominates at high currents. The peroxi-coagulation process of dicamba at I>or=300 mA leads to more than 90% of coagulation, being much more efficient than its comparative electro-Fenton treatment with a Pt anode and 1 mM Fe(2+), where only mineralization takes place. For the chlorophenoxy compounds, electro-Fenton gives a slightly lower depollution than peroxi-coagulation, because more easily oxidable products are produced. Oxidation of chlorinated products during peroxi-coagulation is accompanied by the release of chloride ion to the solution. The efficiency of this method decreases with increasing electrolysis time and current. The decay of all herbicides follows a pseudo-first-order reaction, with a similar constant rate for 4-CPA, MCPA, 2,4-D and 2,4,5-T, and a higher value for dicamba.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chemical Precipitation
  • Electrochemistry
  • Herbicides / chemistry*
  • Hydrogen Peroxide / chemistry
  • Iron / chemistry
  • Kinetics
  • Oxidants / chemistry
  • Water Purification / methods*

Substances

  • Fenton's reagent
  • Herbicides
  • Oxidants
  • Hydrogen Peroxide
  • Iron