Multi-iron tungstodiarsenates. Synthesis, characterization, and electrocatalytic studies of alphabetabetaalpha-(Fe(III)OH(2))(2)Fe(III)(2)(As(2)W(15)O(56))(2)(12)(-)

Inorg Chem. 2003 Feb 24;42(4):1163-9. doi: 10.1021/ic0261169.

Abstract

Reaction of the trivacant lacunary complex, alpha-Na(12)[As(2)W(15)O(56)], with an aqueous solution of Fe(NO(3))(3).9H(2)O yields the sandwich-type polyoxometalate, alphabetabetaalpha-Na(12)(Fe(III)OH(2))(2)Fe(III)(2)(As(2)W(15)O(56))(2) (Na1). The structure of this complex, determined by single-crystal X-ray crystallography (a = 13.434(1) A, b = 13.763(1) A, c = 22.999(2) A, alpha = 90.246(2) degrees, beta = 102.887(2) degrees, gamma = 116.972(1) degrees, triclinic, Ponemacr;, R1 = 5.5%, based on 25342 independent reflections), consists of an Fe(III)(4) unit sandwiched between two trivacant alpha-As(2)W(15)O(56)(12)(-) moieties. UV-vis, infrared, cyclic voltammetry, and elemental analysis data are all consistent with the structure determined from X-ray analysis. Magnetization studies confirm that the four Fe(III) centers are antiferromagnetically coupled. A cyclic voltammogram of Na1 reveals that a three-wave W(VI) system replaces the two-wave W(VI) system found in the precursor alpha-As(2)W(15)O(56)(12)(-) complex. The observed modifications in the CV patterns of Na1 and alpha-As(2)W(15)O(56)(12)(-) are most likely due to subsequent changes in the acid-base properties of two reduced POMs that occur as a result of Fe(III) incorporation. Na1 is shown to be more efficient than the monosubstituted complex alpha(2)-As(2)(Fe(III)OH(2))W(17)O(61)(7)(-) in the electrocatalytic reduction of dioxygen. This is attributed to cooperativity effects among the adjacent Fe(III) centers in Na1.