[Genetic instability in cancer tissues analyzed by RAPD PCR]

Shi Yan Sheng Wu Xue Bao. 2001 Jun;34(2):151-5.
[Article in Chinese]

Abstract

In five kinds of tumors, total 128 specimens were analyzed by RAPD (random amplified polymorphic DNA) PCR with nine 10-base arbitrary primers for detecting instabilities of DNA and chromosome and screening new molecular markers coupled to putative or unknown oncogenes and/or tumor suppressor genes. Bands representing instabilities have been recovered and purified from agarose and cloned into pCAPs vector, and further labeled by DIG as probes for analysis of Southern blot, Northern blot and Sequencing. Results revealed that sample 5 and 3 of the gastric cancers showed the highest genomic changes and the average detectability in five sorts of cancers was up to at least 40% (42.2%-49.4%), and that there were significant differences in the ability of each primer to detect genomic instability, which ranged from 27% to 68%. Despite the highest detectability of genetic instability (68%) in tumor tissues, primer 2 could produce stable profiles of DNA bands in normal tissue genome with good reproducibility. On the contrary, primer 8 was of the lowest one (27%). Band B of single copy found to be allelic losses in gastric and colon cancers according to RFLP analysis was of a novel sequence and registered by Gen-Bank (Accession Number AF151005). Therefore the genetic instabilities often concentrated on some special locuses of chromosome e.g. repetitive sequences etc. and coupled to carcinogenesis. It was impossible or difficult to get great achievements for cancer treatments with the procedure of gene therapy only to one oncogene or one tumor suppressor gene because the extensive DNA variations occurred during the progression of tumor. RAPD assay connected with other techniques was a good tool for the detection of genomic instabilities and direct screening of some new molecular markers related to tumor suppressor genes or oncogenes.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Humans
  • Molecular Sequence Data
  • Neoplasms / genetics*
  • Neoplasms / pathology
  • Polymorphism, Restriction Fragment Length
  • Random Amplified Polymorphic DNA Technique*
  • Sequence Analysis, DNA