Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn2(micro -O)2 complex in response to a temperature jump: a time-resolved structural investigation employing x-ray absorption spectroscopy

Biophys J. 2003 Feb;84(2 Pt 1):1370-86. doi: 10.1016/s0006-3495(03)74952-2.

Abstract

In oxygenic photosynthesis, water is oxidized at a protein-cofactor complex comprising four Mn atoms and, presumably, one calcium. Using multilayers of Photosystem II membrane particles, we investigated the time course of the disassembly of the Mn complex initiated by a temperature jump from 25 degrees C to 47 degrees C and terminated by rapid cooling after distinct heating periods. We monitored polarographically the oxygen-evolution activity, the amount of the Y(D)(ox) radical and of released Mn(2+) by EPR spectroscopy, and the structure of the Mn complex by x-ray absorption spectroscopy (XAS, EXAFS). Using a novel approach to analyze time-resolved EXAFS data, we identify three distinct phases of the disassembly process: (1) Loss of the oxygen-evolution activity and reduction of Y(D)(ox) occur simultaneously (k(1) = 1.0 min(-1)). EXAFS spectra reveal the concomitant loss of an absorber-backscatterer interaction between heavy atoms separated by approximately 3.3 A, possibly related to Ca release. (2) Subsequently, two Mn(III) or Mn(IV) ions seemingly separated by approximately 2.7 A in the native complex are reduced to Mn(II) and released (k(2) = 0.18 min(-1)). The x-ray absorption spectroscopy data is highly suggestive that the two unreleased Mn ions form a di- micro -oxo bridged Mn(III)(2) complex. (3) Finally, the tightly-bound Mn(2)( micro -O)(2) unit is slowly reduced and released (k(3) = 0.014 min(-1)).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorptiometry, Photon / methods*
  • Electron Spin Resonance Spectroscopy
  • Energy Transfer
  • Freezing
  • Hot Temperature*
  • Manganese / chemistry*
  • Models, Chemical
  • Oxidation-Reduction
  • Oxygen / chemistry
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / radiation effects*
  • Photosystem II Protein Complex
  • Polarography
  • Spinacia oleracea / chemistry
  • Temperature

Substances

  • Photosynthetic Reaction Center Complex Proteins
  • Photosystem II Protein Complex
  • Manganese
  • Oxygen