Pathogenesis of hyperferritinemia cataract syndrome

Blood Cells Mol Dis. 2002 Nov-Dec;29(3):532-5. doi: 10.1006/bcmd.2002.0590.

Abstract

Hereditary hyperferritinemia-cataract syndrome (HHCS) is an autosomal dominant disorder characterized by bilateral cataracts and increased serum L-ferritin, in the absence of iron overload. Under physiological conditions, ferritin synthesis is finely regulated at the translational level by iron availability. This regulation is achieved by the high-affinity interaction between cytoplasmic mRNA-binding proteins (iron regulatory proteins, IRPs), and mRNA stem-loop structures, known as iron responsive elements (IREs), located in the untranslated regions (UTRs) of the mRNAs. A single IRE is located on the 5' UTR of a series of genes involved in iron metabolism, like L-ferritin, and the binding IRE-IRPs represses these genes translation. The deregulation of ferritin production responsible of HHCS is caused by heterogeneous mutations in the iron regulatory element (IRE) of L-ferritin that interfere with the binding of iron regulatory proteins, disrupting the negative control of L-ferritin synthesis and causing the constitutive up-regulation of ferritin L-chains. The HHCS families originate from different countries of Europe and North America, suggesting that HHCS may be distributed widely throughout the world and not sporadic, whereas its prevalence remains to be established. The lens seems to be particularly sensitive to the increased amount of L-ferritin and the alteration of the proteic equilibrium in this tissue can be responsible of the cataract. In spite of the elucidation of the genetic basis, the genotype phenotype correlation is not clear. Recently, a study based on the thermo-denaturation profile and dissociation constant of the IRE-IRP complex performed for several mutated IREs has provided evidence for a possible correlation between heterogeneous IRE mutations and serum ferritin levels. On the other hand, the in vivo relevance of these conclusions has not been determined completely. A clinical variability among subjects sharing the same mutation, whether they belonged to the same family or not, has also been demonstrated. These findings suggest that, besides the L-ferritin IRE genotype, additional factors are likely to modulate the lens involvement and the rate of progression to severe cataract in HHCS patients.

MeSH terms

  • Cataract / metabolism*
  • Ferritins / blood*
  • Ferritins / metabolism
  • Genes, Dominant
  • Humans
  • Iron-Regulatory Proteins / metabolism
  • Point Mutation
  • Sequence Deletion

Substances

  • Iron-Regulatory Proteins
  • Ferritins