Multistate/multifunctional systems. A thermodynamic, kinetic, and photochemical investigation of the 4'-dimethylaminoflavylium compound

J Am Chem Soc. 2003 Jan 29;125(4):987-94. doi: 10.1021/ja0287276.

Abstract

The 4'-dimethylaminoflavylium ion in aqueous solution undergoes an intricate network of chemical reactions controlled by pH and light excitation. It is shown that nine different forms are involved, including two species that are not present in previously investigated compounds of the flavylium family. The thermodynamic and kinetic constants of the equilibria and interconversion processes have been obtained by pH jump (included stopped-flow) experiments. The photochromic properties exhibited by the trans/cis chalcone forms have been investigated. The peculiar aspect of 4'-dimethylaminoflavylium, as compared to previously investigated compounds of the same family, is a close to planarity structure, as demonstrated by the X-ray analysis on the parent 4'-aminoflavylium compound (2.3 degrees torsion angle between the benzopyrylium and benzene ring). The results obtained show that the flavylium cation is strongly stabilized by the electron-donor character of the dimethylamino substituent on the benzene ring. The donor-acceptor interaction makes both the protonation of the amino group and the hydration of the flavylium cation difficult, with consequences on the tautomerization and cis/trans isomerization reactions. The multistate/multifunctional properties of 4'-dimethylaminoflavylium have been discussed in the frame of write-lock-read-unlock-erase cycles.