Dinitrogen reduction by TmII, DyII, and NdII with simple amide and aryloxide ligands

J Am Chem Soc. 2003 Jan 8;125(1):10-1. doi: 10.1021/ja0211712.

Abstract

Dinitrogen can be reduced to the planar M2(mu-eta2:eta2-N2) structure without employing cyclopentadienyl or complicated polydentate ligands using the recently discovered divalent oxidation states of Tm(II), Dy(II), and Nd(II). Complexes of these ions with common monodentate amide and aryloxide ligands can effect N2 reduction. THF solutions of LnI2 (Ln = Tm, Dy) in the presence of 2 equiv of NaN(SiMe3)2 reduce dinitrogen to form {[(Me3Si)2N]2(THF)Ln}2(mu-eta2:eta2-N2) complexes that have planar Ln2N2 units and 1.264(7) and 1.305(6) A NN bonds consistent with (N2)2- moieties. With the stronger reductant Nd(II), aryloxides are sufficient ancillary ligands: the NdI2/2KOC6H3tBu2-2,6 (KOAr) system forms [(ArO)2(THF)2Nd]2(mu-eta2:eta2-N2), which has a 1.242(7) A NN bond.