Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27

J Bacteriol. 2003 Jan;185(2):581-91. doi: 10.1128/JB.185.2.581-591.2003.

Abstract

The transfer 2 region (Tra2) of the conjugative plasmid drR27 (derepressed R27) was analyzed by PSI-BLAST, insertional mutagenesis, genetic complementation, and an H-pilus assay. Tra2 contains 11 mating-pair formation (Mpf) genes that are essential for conjugative transfer, 9 of which are essential for H-pilus production (trhA, -L, -E, -K, -B, -V, -C, -P, and -W). TrhK has similarity to secretin proteins, suggesting a mechanism by which DNA could traverse the outer membrane of donors. The remaining two Mpf genes, trhU and trhN, play an auxiliary role in H-pilus synthesis and are proposed to be involved in DNA transfer and mating-pair stabilization, respectively. Conjugative transfer abilities were restored for each mutant when complemented with the corresponding transfer gene. In addition to the essential Mpf genes, three genes, trhO, trhZ, and htdA, modulate R27 transfer frequency. Disruption of trhO and trhZ severely reduced the transfer frequencies of drR27, whereas disruption of htdA greatly increased the transfer frequency of wild-type R27 to drR27 levels. A comparison of the essential transfer genes encoded by the Tra2 and Tra1 (T. D. Lawley, M. W. Gilmour, J. E. Gunton, L. J. Standeven, and D. E. Taylor, J. Bacteriol. 184:2173-2183, 2002) of R27 to other transfer systems illustrates that the R27 conjugative transfer system is a chimera composed of IncF-like and IncP-like transfer systems. Furthermore, the Mpf/type IV secretion systems encoded by IncH and IncF transfer systems are distinct from that of the IncP transfer system. The phenotypic and ecological significance of these observations is discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Cloning, Molecular
  • Conjugation, Genetic*
  • Escherichia coli / genetics*
  • Escherichia coli / growth & development
  • Genetic Complementation Test
  • Molecular Sequence Data
  • Mutation*
  • Open Reading Frames / genetics
  • Plasmids / genetics*
  • Sequence Alignment
  • Sequence Analysis, DNA

Substances

  • Bacterial Proteins