Chlorophyll content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution spectral data

Tree Physiol. 2003 Jan;23(1):23-31. doi: 10.1093/treephys/23.1.23.

Abstract

The physiological status of forest canopy foliage is influenced by a range of factors that affect leaf pigment content and function. Recently, several indices have been developed from remotely sensed data that attempt to provide robust estimates of leaf chlorophyll content. These indices have been developed from either hand-held spectroradiometer spectra or high spectral resolution (or hyperspectral) imagery. We determined if two previously published indices (Datt 1999), which were specifically developed to predict chlorophyll content in eucalypt vegetation by remote sensing at the leaf scale, can be extrapolated accurately to the canopy. We derived the two indices from hand-held spectroradiometer data of eucalypt leaves exhibiting a range of insect damage symptoms. We also derived the indices from spectra obtained from high spectral and spatial resolution Compact Airborne Spectrographic Imager 2 (CASI-2) imagery to determine if reasonable estimates at a scale of < 1 m can be achieved. One of the indices (R 850/R 710 index, where R is reflectance) derived from hand-held spectroradiometer data showed a moderate correlation with relative leaf chlorophyll content (r = 0.59, P < 0.05) for all dominant eucalypt species in the study area. The R (850)/R (710) index derived from CASI-2 imagery yielded slightly lower correlations over the entire data set (r = 0.42, P < 0.05), but correlations for individual species were high (r = 0.77, P < 0.05). A scaling analysis indicated that the R (850)/R (710) index was strongly affected by soil and water cover types when pixels were mixed, but appeared to be invariant to changes in proportions of understory, which may limit its application.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chlorophyll / analysis*
  • Eucalyptus / chemistry*
  • New South Wales
  • Plant Leaves / chemistry*
  • Spacecraft
  • Spectrophotometry / methods*
  • Trees / chemistry*

Substances

  • Chlorophyll