Antimasking aspects of harp seal (Pagophilus groenlandicus) underwater vocalizations

J Acoust Soc Am. 2002 Dec;112(6):3083-90. doi: 10.1121/1.1518987.

Abstract

Underwater sounds are very important in social communication of harp seals (Pagophilus groenlandicus) because they are the main means of long- and short-distance communication. Individual harp seals must try to avoid being masked and emit only those calls that will benefit them. Underwater vocalizations of harp seals were recorded during the breeding season. The physical characteristics associated with antimasking attributes of 16 call types were examined. Rising frequency or increasing amplitude within calls were not common. Most of the calls ended abruptly (range 145-966 dB/s), but call onset was more gradual. At high calling rates (95.1-135 calls/min) there were significantly more calls overlapping temporally than at medium (75.1-95 calls/min) or low (35-75 calls/min) calling rates, but even at the highest calling rates, 79.1% of the calls were not overlapped. When 2, 3, or 4 calls overlapped, there were significantly fewer frequency separations of less than 1/3 octave than would be expected by chance. This is important because sounds that are separated by less than 1/3 octave likely mask each other. When 2-4 calls are occurring simultaneously, only 4.5% to 14.2% are masked by virtue of being within 1/3 octave from their nearest neighbor. None of the overlappping calls was of the same type. This suggests that the seals are actively listening to each other's calls and are not randomly using the different call types. Harp seals use frequency and temporal separation in conjunction with a wide vocal repertoire to avoid masking each other.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Communication*
  • Animals
  • Perceptual Masking / physiology*
  • Seals, Earless / physiology*
  • Sexual Behavior, Animal / physiology*
  • Sound Spectrography*
  • Vocalization, Animal / physiology*