Inhibition and possible induction of rat CYP2D after short- and long-term treatment with antidepressants

J Pharm Pharmacol. 2002 Nov;54(11):1545-52. doi: 10.1211/002235702162.

Abstract

The aim of this study was to investigate the influence of tricyclic antidepressants (imipramine, amitriptyline, clomipramine, desipramine), selective serotonin reuptake inhibitors (SSRIs: fluoxetine, sertraline) and novel antidepressant drugs (mirtazapine, nefazodone) on the activity of CYP2D, measured as a rate of ethylmorphine O-deethylation. The reaction was studied in control liver microsomes in the presence of the antidepressants, as well as in microsomes of rats treated intraperitoneally for one day or two weeks (twice a day) with pharmacological doses of the drugs (imipramine, amitriptyline, clomipramine, nefazodone 10 mg kg(-1) i.p.; desipramine, fluoxetine, sertraline 5 mg kg(-1) i.p.; mirtazapine 3 mg kg(-1) i.p.), in the absence of the antidepressants in-vitro. Antidepressants decreased the activity of the rat CYP2D by competitive inhibition of the enzyme, the potency of their inhibitory effect being as follows: clomipramine (K(i) = 14 microM) > sertraline approximate, equals fluoxetine (K(i) = 17 and 16 microM, respectively) > imipramine approximate, equals amitriptyline (K(i) = 26 and 25 microM, respectively) > desipramine (K(i) = 44 microM) > nefazodone (K(i) = 55 microM) > mirtazapine (K(i) = 107 microM). A one-day treatment with antidepressants caused a significant decrease in the CYP2D activity after imipramine, fluoxetine and sertraline. After prolonged administration of antidepressants, the decreased CYP2D activity produced by imipramine, fluoxetine and sertraline was still maintained. Moreover, amitriptyline and nefazodone significantly decreased, while mirtazapine increased the activity of the enzyme. Desipramine and clomipramine did not produce any effect when administered in-vivo. The obtained results indicate three different mechanisms of the antidepressants-CYP2D interaction: firstly, competitive inhibition of CYP2D shown in-vitro, the inhibitory effects of tricyclic antidepressants and SSRIs being stronger than those of novel drugs; secondly, in-vivo inhibition of CYP2D produced by both one-day and chronic treatment with tricyclic antidepressants (except for desipramine and clomipramine) and SSRIs, which suggests inactivation of the enzyme apoprotein by reactive metabolites; and thirdly, in-vivo inhibition by nefazodone and induction by mirtazapine of CYP2D produced only by chronic treatment with the drugs, which suggests their influence on the enzyme regulation.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antidepressive Agents / administration & dosage
  • Antidepressive Agents / pharmacology*
  • Cytochrome P-450 Enzyme System / metabolism*
  • Dose-Response Relationship, Drug
  • In Vitro Techniques
  • Isoenzymes / metabolism
  • Kinetics
  • Male
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / metabolism
  • Rats
  • Rats, Wistar
  • Selective Serotonin Reuptake Inhibitors / administration & dosage
  • Selective Serotonin Reuptake Inhibitors / pharmacology
  • Time Factors

Substances

  • Antidepressive Agents
  • Isoenzymes
  • Serotonin Uptake Inhibitors
  • Cytochrome P-450 Enzyme System
  • ethylmorphine O-deethylase