Surface reactivity, cytotoxicity, and transforming potency of iron-covered compared to untreated refractory ceramic fibers

J Toxicol Environ Health A. 2002 Dec 13;65(23):2007-27. doi: 10.1080/00984100290071360.

Abstract

Untreated and iron-coated refractory ceramic fibers (RCFs) 1, 3, and 4 were examined for their potential to generate free radicals and to catalyze hydrogen peroxide decomposition in cell-free assays and were compared for cytotoxic and transforming potencies in Syrian hamster embryo (SHE) cell system. Coating with a high quantity of iron increased the capability of RCFs to generate hydroxyl radicals and to catalyze the decomposition of hydrogen peroxide. In the SHE cells, the untreated RCFs had varying ability to induce inhibition of cell proliferation, cytotoxicity (as measured by the colony-forming efficiency, CE) and morphological transformation, in a concentration-dependent manner. According to cytotoxic and transforming potencies, they ranged as follows: RCF3 > RCF1 > RCF4. The lethal concentration 50 (LC50; decrease of CE to 50% of controls after 7 d of treatment) expressed per number of RCF3 and RCF1/cm(2) of culture dish was 2.5 x 10(4) and 3.7 x 10(4), respectively, whereas RCF4 was not cytotoxic up to the highest concentration tested (23.7 x 10(4) fibers/cm(2)). At LC50, RCF3 was 1.4-fold more transforming than RCF1, and the weakest, RCF4, induced less than 1% transformation. Iron coating of RCF1 and RCF3 markedly attenuated their cytostatic, cytotoxic, and transforming potencies without a linear concentration-transformation relationship. In contrast, iron coating of RCF4 affected slightly its low transforming potency, although the growth inhibitory effect was reduced. The observed decrease rather than increase in the cytotoxic and transforming potencies of the active samples RCF1 and RCF3 by their coating with large amounts of ferric iron suggests that it is not the quantity or any form of iron on the surface of fibers but the iron, even in trace, in a particular redox and coordinate state that might play a role in the fiber's surface reactivity with regard to the biological material. Surface chemical functions involved in the interaction with the cell could be inactivated by the deposition of a high quantity of Fe(III) on the surface of fibers. Physicochemical studies correlated to biological effects is an approach for understanding the properties of solids related to a given biological response and for elucidating the cellular and molecular mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Culture Techniques
  • Ceramics / chemistry*
  • Ceramics / toxicity
  • Cricetinae
  • Embryonic and Fetal Development
  • Ferric Compounds / chemistry
  • Free Radicals
  • Iron / chemistry*
  • Mesocricetus
  • Mineral Fibers / toxicity
  • Toxicity Tests

Substances

  • Ferric Compounds
  • Free Radicals
  • Mineral Fibers
  • Iron