Effect of corn- vs molasses-based supplements on trace mineral status in beef heifers

J Anim Sci. 2002 Nov;80(11):2787-91. doi: 10.2527/2002.80112787x.

Abstract

Two studies were conducted to compare the availability of trace minerals offered to Brahman-crossbred heifers in either grain- or molasses-based supplements. Heifers were randomly assigned to bahiagrass pastures of equal size (n = 3 and 2 heifers/ pasture with 6 and 4 pastures/treatment for Experiment 1 and 2, respectively). Two supplements were formulated using corn and cottonseed meal (DRY) or molasses and cottonseed meal (LIQ). In Experiment 2, a third treatment consisted of the DRY supplement with additional S to equal the amount naturally supplied by the LIQ treatment (DRY+S). Supplements were formulated to provide, on average, 1.5 kg of TDN and 0.3 kg of CP/heifer daily and were fed three times weekly. Supplements also were fortified to provide 140, 76, and 63 mg of Cu, Mn, and Zn per heifer daily. Individual heifer weights were collected at the start and conclusion of the study, following a 12-h shrink. Plasma ceruloplasmin and liver Cu, Mn, Mo, Fe, and Zn concentrations were determined on d 0, 29, 56, and 84 in Experiment 1, and d 0, 32, 57, and 90 in Experiment 2. No differences were detected in heifer BW change (-9.3 and -7.3 kg for DRY and LIQ in Experiment 1, and 51.7, 46.3, and 46.7 kg for DRY, DRY+S, and LIQ in Experiment 2, respectively). In both experiments, liver Fe, Mn, and Zn concentrations were not affected by supplement treatment. Molybdenum tended (P = 0.06 and 0.10 for Experiments 1 and 2, respectively) to accumulate in the liver of heifers fed molasses-based supplements. In Experiment 1, Cu accumulation was less (P < 0.001) in heifers fed the liquid supplements (271 vs 224, 286 vs 202, and 330 vs 218 ppm, for DRY and LIQ supplements on d 29, 56, and 84, respectively). In Experiment 2, heifers receiving Cu from DRY supplements had a 155-ppm increase in liver Cu concentration, which was greater (P = 0.03) than DRY+S (87 ppm increase) and LIQ (P < 0.001; 13 ppm increase). Although lower than heifers receiving DRY, heifers receiving DRY+S had greater (P = 0.02) liver Cu concentrations than heifers receiving LIQ by the end of the study. In both experiments, plasma ceruloplasmin concentrations were highest (P < 0.04) in heifers receiving DRY supplement. The results of these studies suggest that components in molasses-based supplements decrease the accumulation of Cu in the liver of beef heifers. The S and Mo components of molasses may be responsible, at least in part, for this antagonism.

Publication types

  • Comparative Study

MeSH terms

  • Animal Feed
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Body Weight
  • Cattle / growth & development*
  • Cattle / metabolism
  • Ceruloplasmin / metabolism
  • Dietary Supplements*
  • Female
  • Liver / chemistry
  • Minerals / administration & dosage
  • Minerals / analysis*
  • Molasses*
  • Nutritional Status*
  • Random Allocation
  • Tissue Distribution
  • Zea mays*

Substances

  • Minerals
  • Ceruloplasmin