Translocation properties of primitive molecular machines and their relevance to the structure of the genetic code

J Theor Biol. 2003 Jan 7;220(1):27-45. doi: 10.1006/jtbi.2003.3108.

Abstract

We address the question, related with the origin of the genetic code, of why are there three bases per codon in the translation to protein process. As a follow-up to our previous work (Aldana et al., 1998, Martínez-Mekler et al., 1999a,b), we approach this problem by considering the translocation properties of primitive molecular machines, which capture basic features of ribosomal/messenger RNA interactions, while operating under prebiotic conditions. Our model consists of a short one-dimensional chain of charged particles (rRNA antecedent) interacting with a polymer (mRNA antecedent) via electrostatic forces. The chain is subject to external forcing that causes it to move along the polymer which is fixed in a quasi-one-dimensional geometry. Our numerical and analytic studies of statistical properties of random chain/polymer potentials suggest that, under very general conditions, a dynamics is attained in which the chain moves along the polymer in steps of three monomers. By adjusting the model in order to consider present-day genetic sequences, we show that the above property is enhanced for coding regions. Intergenic sequences display a behavior closer to the random situation. We argue that this dynamical property could be one of the underlying causes for the three-base codon structure of the genetic code

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Codon
  • Evolution, Molecular*
  • Genetic Code*
  • Models, Genetic*
  • Origin of Life
  • Translocation, Genetic*

Substances

  • Codon