Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes

J Am Chem Soc. 2002 Dec 4;124(48):14464-71. doi: 10.1021/ja0273997.

Abstract

One-dimensional silicon-carbon nanotubes and nanowires of various shapes and structures were synthesized via the reaction of silicon (produced by disproportionation reaction of SiO) with multiwalled carbon nanotubes (as templates) at different temperatures. A new type of multiwalled silicon carbide nanotube (SiCNT), with 3.5-4.5 A interlayer spacings, was observed in addition to the previously known beta-SiC (cubic zinc blende structure) nanowires and the biaxial SiC-SiO(x) nanowires. The SiCNT was identified by high-resolution transmission microscopy (HRTEM), elemental mapping, and electron energy loss spectroscopy (EELS). The multiwalled SiCNT was found to transform to a beta-SiC crystalline structure by electron beam annealing under TEM.