Plasmid DNA-entrapped nanoparticles engineered from microemulsion precursors: in vitro and in vivo evaluation

Bioconjug Chem. 2002 Nov-Dec;13(6):1319-27. doi: 10.1021/bc0255586.

Abstract

Nonviral gene therapy has been a rapidly growing field. However, delivery systems that can provide protection for pDNA and potential targeting are still desired. A novel pDNA-nanoparticle delivery system was developed by entrapping hydrophobized pDNA inside nanoparticles engineered from oil-in-water (O/W) microemulsion precursors. Plasmid DNA was hydrophobized by complexing with cationic surfactants DOTAP and DDAB. Warm O/W microemulsions were prepared at 50-55 degrees C with emulsifying wax, Brij 78, Tween 20, and Tween 80. Nanoparticles were engineered by simply cooling the O/W microemulsions containing the hydrophobized pDNA in the oil phase to room temperature while stirring. The nanoparticles were characterized by particle sizing, zeta-potential, and TEM. Nanoparticles were challenged with serum nucleases to assess pDNA stability. In addition, the nanoparticles were coincubated with simulated biological media to assess their stability. In vitro hepatocyte transfection studies were completed with uncoated nanoparticles or nanoparticles coated with pullulan, a hepatocyte targeting ligand. In vivo biodistribution of the nanoparticles containing I-125 labeled pDNA was monitored 30 min after tail-vein injection to Balb/C mice. Depending on the hydrophobizing lipid agent employed, uniform pDNA-entrapped nanoparticles (100-160 nm in diameter) were engineered within minutes from warm O/W microemulsion precursors. The nanoparticles were negatively charged (-6 to -15 mV) and spherical. An anionic exchange column was used to separate unentrapped pDNA from nanoparticles. Gel permeation chromatography of pDNA-entrapped and serum-digested nanoparticles showed that the incorporation efficiency was approximately 30%. Free 'naked' pDNA was completely digested by serum nucleases while the entrapped pDNA remained intact. Moreover, in vitro transfection studies in Hep G2 cells showed that pullulan-coated nanoparticles resulted in enhanced luciferase expression, compared to both pDNA alone and uncoated nanoparticles. Preincubation of the cells with free pullulan inhibited the transfection. Finally, 30 min after tail vein injection to mice, only 16% of the 'naked' pDNA remained in the circulating blood compared to over 40% of the entrapped pDNA. Due to the apparent stability of these pDNA-entrapped nanoparticles in the blood, they may have potential for systemic gene therapy applications requiring cell and/or tissue-specific delivery.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Emulsions / chemistry*
  • Female
  • Genetic Therapy / methods
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Nanotechnology*
  • Particle Size
  • Plasmids / administration & dosage
  • Plasmids / chemistry*
  • Plasmids / pharmacokinetics
  • Tissue Distribution
  • Transfection / methods*
  • Tumor Cells, Cultured

Substances

  • Emulsions