Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil

Environ Int. 2002 Nov;28(5):367-74. doi: 10.1016/s0160-4120(02)00060-0.

Abstract

Psidium guajava L., Psidium cattleyanum Sabine and Mangifera indica L. were tested under field conditions as possible tropical bioindicators of industrial air pollution. The study was performed around the industrial complex of Cubatão, SE Brazil, which comprises 23 industries, including fertilizer, cement, chemical, petrochemical, and steel plants, with 110 production units and 260 emission sources of pollutants. Saplings were exposed to environmental conditions during four periods of 16 weeks each (September 1994-September 1995), at four different sites in the coastal mountains near the industrial complex: the Valley of Pilões River (VP), the reference area; the Valley of Mogi River (VM), with high contamination of particulate matter, fluorides (F), sulfur (S) and nitrogen (N) compounds; Caminho do Mar (CM1, CM2), mainly affected by organic pollutants, S and N compounds, and secondary pollutants; and Paranapiacaba (PP), affected by secondary pollutants, such as ozone. M. indica did not adapt to the climatic conditions at the exposure sites. In the two Psidium species, the presence of visible symptoms, root/shoot ratio, foliar contents of F, S and N, amounts of ascorbate (AA) and water-soluble thiols (-SH), as well as peroxidase activity (POD) were determined. P. guajava showed higher foliar accumulation of F, S and N, more pronounced alterations of biochemical indicators, and less visible leaf injury than P. cattleyanum. P. guajava may be used as an accumulative indicator in tropical climates, while further studies will be needed before P. cattleyanum might be applied as a sensitive species in biomonitoring programs.

MeSH terms

  • Air Pollutants / adverse effects*
  • Air Pollutants / analysis
  • Brazil
  • Environmental Monitoring / methods*
  • Industry
  • Mangifera* / physiology
  • Plant Leaves / chemistry
  • Psidium* / physiology
  • Sensitivity and Specificity
  • Tropical Climate

Substances

  • Air Pollutants