Conformational analysis of two xylose-containing N-glycans in aqueous solution by using 1H NMR ROESY and NOESY spectroscopy in combination with MD simulations

Carbohydr Res. 2002 Nov 19;337(21-23):2279-99. doi: 10.1016/s0008-6215(02)00212-4.

Abstract

The conformational behavior of the synthetic hexa- and heptasaccharide methyl beta-glycosides alpha-D-Manp-(1 --> 6)-[alpha-D-Manp-(1 --> 3)-][beta-D-Xylp-(1 --> 2)-]beta-D-Manp-(1 --> 4)-beta-D-GlcpNAc-(1 --> 4)-beta-D-GlcpNAc-(1 --> OMe and alpha-D-Manp-(1 --> 6)-[alpha-D-Manp-(1 --> 3)-][beta-D-Xylp-(1 --> 2)-]beta-D-Manp-(1 --> 4)-beta-D-GlcpNAc-(1 --> 4)-[alpha-L-Fucp-(1 --> 6)-]beta-D-GlcpNAc-(1 --> OMe, representing the xylosylated and the xylosylated alpha-(1 --> 6)-fucosylated core structures of N-glycans in alpha(D)-hemocyanin of the snail Helix pomatia, respectively, were investigated by 1H NMR spectroscopy in combination with molecular dynamics (MD) simulations in water. 1H and 13C chemical shifts of the oligosaccharides were assigned using 1H-(1)H COSY, TOCSY, and NOESY, and 1H-(13)C HMQC techniques. Experimental 2D 1H cross-peak intensities from one series of NOESY and one series of ROESY experiments of the two oligosaccharides were compared with calculated values derived from MD trajectories using the CROSREL program, yielding information about the conformation of each glycosidic linkage of the methyl glycosides. The flexibility of the linkages was described by generalized order parameters and internal rotation correlation times. Analysis of the data indicated that several conformations are likely to exist for the alpha-D-Man-(1 --> 6)-beta-D-Man, the alpha-L-Fuc-(1 --> 6)-beta-D-GlcNAc, and the alpha-D-Man-(1 --> 3)-beta-D-Man linkage, whereas the beta-D-Xyl-(1 --> 2)-beta-D-Man-(1 --> 4)-beta-D-GlcNAc-(1 --> 4)-beta-D-GlcNAc fragment occurs in one rigid conformation. No significant differences were found between the corresponding structural elements in both methyl glycosides. NOESY and ROESY experiments proved to be suitable for providing the experimental data required, however, due to more overlap within the ROESY spectra, reducing the accuracy of the analysis, NOESY spectral analysis is preferred.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbohydrate Conformation
  • Carbohydrate Sequence
  • Computer Simulation*
  • Helix, Snails / chemistry
  • Hemocyanins / chemistry
  • Magnetic Resonance Spectroscopy*
  • Molecular Sequence Data
  • Oligosaccharides / chemistry
  • Polysaccharides / chemistry*
  • Solutions
  • Xylose

Substances

  • Oligosaccharides
  • Polysaccharides
  • Solutions
  • Hemocyanins
  • Xylose