Electrochemical characterization of cast titanium alloys

Biomaterials. 2003 Jan;24(2):213-8. doi: 10.1016/s0142-9612(02)00293-4.

Abstract

A reaction layer forms on cast titanium alloy surfaces due to the reaction of the molten metal with the investment. This surface layer may affect the corrosion of the alloy in the oral environment. The objective of this study was to characterize the in vitro corrosion behavior of cast titanium alloys. ASTM Grade 2 CP titanium, Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr alloys were cast into a MgO-based investment. Experiments were performed on castings (N=4) with three surface conditions: (A) as-cast surface after sandblasting, (B) polished surface after removal of the reaction layer, and (C) sandblasted surface after removal of the reaction layer. Open-circuit potential (OCP) measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air+10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was subsequently conducted in the same medium deaerated with N(2)+10% CO(2) gas 2 h before and during the experiment. Polarization resistance (R(P)) and corrosion rate (I(CORR)) were calculated. Numerical results were subjected to nonparametric statistical analysis at alpha=0.05. The OCP stabilized for all the specimens after 6 x 10(4)s. Apparent differences in anodic polarization were observed among the different surfaces for all the metals. A passivation region followed by breakdown and repassivation were seen on specimens with surfaces A and C. An extensive passive region was observed on all the metals with surface B. The Kruskal-Wallis test showed no significant differences in OCP, R(p), I(CORR) or break down potential for each of the three surfaces among all the metals. The Mann-Whitney test showed significantly lower R(P) and higher I(CORR) values for surface C compared to the other surfaces. Results indicate that the surface condition has more effect on corrosion of these alloys than the surface reaction layer. Within the oxidation potential range of the oral cavity, all the metal/surface combinations examined showed excellent corrosion resistance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alloys / chemistry*
  • Electrochemistry
  • Titanium / chemistry*

Substances

  • Alloys
  • Titanium