Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota

J Anim Sci. 2002 Oct;80(10):2639-45. doi: 10.2527/2002.80102639x.

Abstract

A study was conducted to evaluate the nutrient content and variability of distiller's dried grains with solubles (DDGS) originating from new (less than 5 yr old) ethanol plants in Minnesota and South Dakota. Ten plants (8 MN, 2 SD) participated in the study, submitting a total of 118 samples. Samples were collected every 2 mo from ten ethanol plants in the Minnesota-South Dakota (MNSD) region from 1997 to 1999 and were analyzed for amino acid levels, DM, CP, crude fiber, crude fat, ash, ADF, NDF, Ca, P, K, Mg, S, Na, Zn, Mn, Cu, and Fe analysis. Digestible energy (DE), ME, and NFE levels were also calculated. Means (dry-matter basis) and coefficients of variation for each nutrient among all plants during 1997 to 1999 were DM (88.9%, 1.7%), CP (30.2%, 6.4%), crude fat (10.9%, 7.8%), crude fiber (8.8%, 8.7%), ash (5.8%, 14.7%), NFE (45.5%, 6.1%), ADF (16.2%, 28.4%), NDF (42.1%, 14.3%), calculated DE (3,990 kcal/kg, 3.24%), calculated ME (3,749 kcal/kg, 3.28%), Arg (1.20%, 9.1%), His (0.76%, 7.8%), Ile (1.12%, 8.7%), Leu (3.55%, 6.4%), Lys (0.85%, 17.3%), Met (0.55%, 13.6%), Phe (1.47%, 6.6%), Thr (1.13%, 6.4%), Trp (0.25%, 6.7%), Val (1.50%, 7.2%), Ca (0.06%, 57.2%), and P (0.89%, 11.7%), respectively. Among the amino acids analyzed, Lys was the most variable (CV = 17.3%), followed by Met (CV = 13.6%). Nutrient levels of MNSD DDGS were higher in crude fat, NDF, DE, ME, P, Lys, Met, and Thr and lower for DM, ADF, and Ca than NRC (1998) values. Nutrient values differed between years for ash, DE, Mn, Zn, Cys (P < 0.10), Fat, TDN, ME, Met, Ile (P < 0.05), Ca, P, K, Mg, and Cu (P < 0.01). These results suggest that gross energy; P; and total Lys, Met, and Thr levels are higher in DDGS from MNSD ethanol plants compared to published values and chemical analysis values of a DDGS sample obtained from an older Midwestern plant.

MeSH terms

  • Animal Feed / analysis*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Digestion*
  • Edible Grain / chemistry*
  • Minnesota
  • Nutritive Value
  • South Dakota
  • Swine / physiology*