Differential wavelength-scanning heterodyne interferometer for measuring large step height

Appl Opt. 2002 Oct 1;41(28):5866-71. doi: 10.1364/ao.41.005866.

Abstract

An interferometer based on the differential heterodyne configuration and wavelength-scanning interferometry for measuring large step heights is presented. The proposed interferometer is less sensitive to environmental disturbances than other interferometers and can accurately measure interference phases. A tunable diode laser is utilized to illuminate the interferometer and thus solve the phase ambiguity problem. Counting the interference fringes as the wavelength is scanned through a known change in wavelength directly determines the step height. Three gauge blocks of different lengths, 5, 10, and 50 mm, are individually wrung on a steel plate to simulate large step heights. Comparing the results measured by the proposed interferometer with those by the gauge block interferometer reveals that the accuracy is approximately 100 nm.