Phosphine and phosphonite complexes of a ruthenium(II) porphyrin. 1. Synthesis, structure, and solution state studies

Inorg Chem. 2002 Oct 7;41(20):5255-68. doi: 10.1021/ic025727y.

Abstract

We have investigated the effect of complexation of different phosphorus ligands on the stability, solid state structure, and spectroscopic properties (NMR, IR, UV-vis) of a 5,15-diphenyl-substituted ruthenium porphyrin, (MeOH)Ru(II)(CO)(DPP) 2 [DPP = 5,15-bis(3',5'-di-tert-butyl)phenyl-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin]. The ligands used are PPh(3), diphenyl(phenylacetenyl)phosphine (DPAP), bis(diphenylphosphino)acetylene (DPPA), tris(phenylacetenyl)phosphine [(PA)(3)P], and diethyl (phenylacetenyl)phosphonite [PAP(OEt)(2)]. The mono-phosphine complexes (PR(3))Ru(II)(CO)(DPP) are readily formed in solution in quantitative yields. The complexes display association constants ranging from 1.2 x 10(4) M(-1) for PPh(3) to 4.8 x 10(6) M(-1) for PAP(OEt)(2). The weak association of PPh(3) does not correlate with its pK(a), delta((31)P), or cone angle value and is attributed to steric effects. Due to their kinetic lability, which is shown by 2D NMR spectroscopy, and the weakening of the carbonyl ligand via a trans effect, the mono-phosphine complexes could not be isolated. IR spectroscopy gives the relative order of pi-acceptor strength as PPh(3) < DPAP, DPPA < (PA)(3)P < PAP(OEt)(2), whereas the relative order of the sigma-donor strength is PPh(3) < (PA)(3)P < DPAP, DPPA < PAP(OEt)(2), based on the calculated pK(a) values and on the (31)P((1)H) NMR chemical shifts of the ligands. The chemical shift differences in the (31)P9(1)H)) NMR spectra upon ligand binding display a linear correlation with the calculated pK(a) values of the protonated ligands HPR(3)(+); we propose that the pK(a), and probably other electronic properties, of a specific phosphorus ligand can be estimated on the basis of the chemical shift difference Deltadelta((31)P) upon complexation to a metalloporphyrin. The bis-phosphine complexes can be isolated in pure form by crystallization from CHCl(3)-MeOH solutions using excess ligand. Association of the second ligand is in the same order of magnitude as the first binding for the phosphines, but the second phosphonite binding is decreased by a factor of about 100. The solid state structures show only marginal differences in the geometrical parameters. The calculated and the crystallographic cone angles of the ligands generally do not match, apart from the values obtained for PAP(OEt)(2).