Different glycosylation of cadherins from human bladder non-malignant and cancer cell lines

Cancer Cell Int. 2002 Jun 18:2:6. doi: 10.1186/1475-2867-2-6.

Abstract

Background: The aim of the present study was to determine whether stage of invasiveness of bladder cancer cell lines contributes to alterations in glycan pattern of their cadherins.

Results: Human non-malignant epithelial cell of ureter HCV29, v-raf transfected HCV29 line (BC3726) and transitional cell cancers of urine bladder Hu456 and T24 were grown in cell culture. Equal amounts of protein from each cell extracts were separated by SDS-PAGE electrophoresis and were blotted on an Immobilon P membrane. Cadherins were immunodetected using anti-pan cadherin mAb and lectin blotting assays were performed, in parallel. N-oligosaccharides were analysed by specific reaction with Galanthus nivalis agglutinin (GNA), Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Datura stramonium agglutinin (DSA), Aleuria aurantia agglutinin (AAA), Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA). The cadherin from HCV29 cell line possessed bi- and/or 2,4-branched triantennary complex type glycans, some of which were alpha2,6-sialylated. The cadherin from BC3726 cell line exhibited exclusively high mannose type glycans. Cadherins from Hu456 and T24 cell lines expressed high mannose type glycans as well as beta1,6-branched oligosaccharides with poly-N-acetyllactosamine structures and alpha2,3-linked sialic acid residues. Additionally, the presence of fucose and alpha2,6-sialic acid residues on the cadherin from T24 cell line was detected.

Conclusions: These results indicate that N-glycosylation pattern of cadherin from bladder cancer cell line undergoes modification during carcinogenesis.