Effect of High Physiological Temperatures on NAD+ Content of Green Leaf Mitochondria (Apparent Inhibition of Glycine Oxidation)

Plant Physiol. 1993 Aug;102(4):1157-1162. doi: 10.1104/pp.102.4.1157.

Abstract

We observed a rapid decline in the rate of glycine oxidation by purified pea (Pisum sativum L.) leaf mitochondria preincubated at 40[deg]C for 2 min. In contrast, exogenous NADH and succinate oxidations were not affected by the heat treatment. We first demonstrated that the inhibition of glycine oxidation was not attributable to a direct effect of high temperatures on glycine decarboxylase/serine hydroxymethyltransferase. We observed that (a) addition of NAD+ to the incubation medium resulted in a resumption of glycine-dependent O2 uptake by intact mitochondria, (b) addition of NAD+ to the suspending medium prevented the decline in the rate of glycine-dependent O2 consumption by pea leaf mitochondria incubated at 40[deg]C, (c) NAD+ concentration in the matrix space collapses within only 5 min of warm temperature treatment, and (d) mitochondria treated with the NAD+ analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3[prime]-NAD+ retained high rates of glycine-dependent O2 uptake after preincubation at 40[deg]C. Therefore, we conclude that the massive and rapid efflux of NAD+, leading to the apparent inhibition of glycine oxidation, occurs through the specific NAD+ carrier present in the inner membrane of plant mitochondria. Finally, our data provide further evidence that NAD+ is not firmly bound to the inner membrane.