Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer's disease

J Alzheimers Dis. 1999 Nov;1(4-5):275-85. doi: 10.3233/jad-1999-14-508.

Abstract

Many studies have shown that breakdown of the amyloid protein precursor (APP) to produce the amyloid protein is an important step in the pathogenic mechanism which causes Alzheimer's disease (AD). However, little is known about the normal function of APP. Developmental studies show that APP expression increases during the period of brain development when neurite outgrowth and synaptogenesis is maximal. APP is expressed highly within growing neurites and in growth cones, and purified APP has been shown to stimulate neurite outgrowth from cells in culture. Thus APP may regulate neurite outgrowth or synaptogenesis in vivo. APP is actively secreted from many cells, and the C-terminally secreted APP has been shown to associate with components of the extracellular matrix, such as the heparan sulphate proteoglycans (HSPGs). Two putative heparin-binding domains on APP have been reported. Binding of HSPGs to an N-terminal heparin-binding domain (HBD-1) stimulates the effect of substrate-bound APP on neurite outgrowth. In the mature nervous system, APP may play an important role in the regulation of wound repair. It is highly likely that studies on the normal functions of APP will shed further light on aspects of the pathogenesis of AD.