Mechanical property measurements of nanoscale structures using an atomic force microscope

Ultramicroscopy. 2002 May;91(1-4):111-8. doi: 10.1016/s0304-3991(02)00089-x.

Abstract

This paper describes nanometer-scale bending tests of fixed single-crystal silicon (Si) and silicon dioxide (SiO2) nanobeams using an atomic force microscope (AFM). The technique is used to evaluate elastic modulus of the beam materials and bending strength of the beams. Nanometer-scale Si beams with widths ranging from 200 to 800 nm were fabricated on a Si diaphragm using field-enhanced anodization using an AFM followed by anisotropic wet etching. Subsequent thermal oxidation of Si beams was carried out to create SiO2 beams. Results from the bending tests indicate that elastic modulus values are comparable to bulk values. However, the bending strength appears to be higher for these nanoscale structures than for large-scale specimens. Observations of the fracture surface and calculations of the crack length from Griffith's theory appear to indicate that the maximum peak-to-valley distance on the beam top surfaces influence the values of the observed bending strengths.