Time reversal versus phase conjugation in a multiple scattering environment

Ultrasonics. 2002 May;40(1-8):275-80. doi: 10.1016/s0041-624x(02)00106-3.

Abstract

We present experimental results on the reversibility of ultrasound in a multiple scattering medium. An ultrasonic pulsed wave is transmitted from a point source to a 128-element receiving array through 2D samples with various thickness. The samples consist of random collections of parallel steel rods immersed in water. The scattered waves are recorded, time reversed and sent back into the medium. The time-reversed waves are converging back to their source and the quality of spatial and temporal focusing on the source is related to the second-order moments of the scattered wave (correlation) in time and in space. Experimental results show that it is possible to obtain a robust estimation of the correlations on a single realisation of disorder, taking advantage of the wide frequency bandwidth. The spatial resolution of the system is only limited by the correlation length of the scattered field, and no longer by diffraction. Moreover, successful time-reversal focusing using a single element instead of an array is possible, whereas a one-channel monochromatic phase conjugation fails. The efficiency of broad-band time reversal compared to monochromatic phase conjugation lies in the number of 'information grains' in the frequency bandwidth.