Control of the ultrasonic beam transmitted through an irregular profile using a smart flexible transducer: modelling and application

Ultrasonics. 2002 May;40(1-8):243-6. doi: 10.1016/s0041-624x(02)00145-2.

Abstract

In most of industries as aeronautics, aerospace and nuclear, the main part of the ultrasonic testing is carried out directly in touch with the inspected component. Among others, the cooling piping of French pressurized water reactor comprises many welding components with complex geometry: elbows, butt welds, nozzles. In service inspections of such components performed with conventional ultrasonic contact transducers present limited performances. Variations in sensitivity are produced by unmatched contact on irregular surface, which results in poor detection performances. In addition, the beam orientation transmitted through complex interfaces cannot be totally controlled, because of the disorientations suffered by the transducer during its displacement. As a result, a possible defect cannot be correctly detected, positioned and characterized. At last, the geometry of some components limits the displacement of the transducer, resulting in an uncovered scan area. To overcome these difficulties and to improve the performances of such inspections, the CEA, supported by the safety authorities (IPSN), has developed a new concept of phased array transducer. The phased array radiating surface is flexible to optimise the contact, and thus the sensitivity of the testing, while the characteristics of the transmitted beam (orientation and focal depth) are preserved during the scanning, thanks to a delay law optimising algorithm. This computation requires the actual position of the elements, so a specific instrumentation is coupled to the transducer to measure its radiating surface distortions. Thus, this smart flexible transducer becomes self-adaptive. Recent studies have been made to obtain further performances improvements of this system, including instrumentation development and a new phased array design. Both longitudinal and shear waves focused beams can therefore be generated and mastered with this smart transducer. Inspections have been performed on a specimen containing artificial defects under a realistic profile, with an adaptive mode to compensate the effect of the irregular profile. Experimental results, displayed using specific imaging, show the ability of this system to detect and characterize defects under irregular profiles, using longitudinal or shear waves in a fully mastered beam.