Magnetic-field induced quantum critical point in YbRh(2)Si(2)

Phys Rev Lett. 2002 Jul 29;89(5):056402. doi: 10.1103/PhysRevLett.89.056402. Epub 2002 Jul 15.

Abstract

We report low-temperature calorimetric, magnetic, and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh(2)Si(2) ( T(N)=70 mK) as a function of magnetic field B. While for fields exceeding the critical value B(c0) at which T(N)-->0 the low-temperature resistivity shows an AT2 dependence, a 1/(B-B(c0)) divergence of A(B) upon reducing B to B(c0) suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.