Synthesis, coordination to Rh(I), and hydroformylation catalysis of new beta-aminophosphines bearing a dangling nitrogen group: an unusual inversion of a Rh-coordinated P center

Inorg Chem. 2002 Jul 29;41(15):3876-85. doi: 10.1021/ic011035i.

Abstract

Variants of the beta-aminophosphine L(1) [Ph(2)PCH(2)CH(Ph)NHPh] containing additional nitrogen donor functions have been prepared. These functions are branched off the C atom adjacent to the P atom, or the P atom itself. Ligand [Ph(2)PCH(o-C(6)H(4)NMe(2))CH(Ph)NHPh] has been obtained as a mixture of two diastereomers L(3A) and L(3B) by lithiation of L(2) [Ph(2)PCH(2)(o-C(6)H(4)NMe(2))] with n-BuLi followed by PhCH=NPh addition and hydrolysis. The diastereomers have been separated by fractional crystallization from ethanol. Ligand Et(2)NCH(2)P(Ph)CH(2)CH(Ph)NHPh has been obtained as a mixture of two diastereomers L(5A) and L(5B)(starting with P-Ph reductive cleavage of L(1) by lithium and subsequent hydrolysis to give PhP(H)CH(2)CH(Ph)NHPh (mixture of two diastereomers L(4A) and L(4B)). The latter reacts with diethylamine and formaldehyde to afford the L(5) diastereomeric mixture. Complexes RhCl(CO)(L) (L = L(3A), 1(A); L(3B), 1(B); L(5A/B), 2(A/B)) were obtained by reaction of [RhCl(CO)(2)](2) and the appropriate ligand or ligand mixture. Complexes 1(A), 1(B), and 2(A) have been isolated in pure form and characterized by classical techniques and by single-crystal X-ray diffraction. All structures exhibit a bidentate kappa-P,kappa-N(NHPh) mode similar to the complex containing L(1). While complexes 1(A) or 1(B) are stable in CDCl(3) solution, complex 2(A) slowly converts to its diastereomer 2(B). This unexpected epimerization appears to take place by inversion at the Rh-coordinated P center, an apparently unprecedented phenomenon. A mechanism based on a reversible P-C bond oxidative addition is proposed. The influence of the pendant nitrogen function of the diaminophosphines L(3A) and L(5A/B) on the rhodium catalytic activity in styrene hydroformylation has been examined and compared to that of the aminophosphines L(1) or L(2). The observed trends are related to the basicity of the dangling amine function and to its proximity to the metal center.