Femoral fracture repair and postoperative management in new zealand white rabbits

Contemp Top Lab Anim Sci. 2002 Jul;41(4):49-52.

Abstract

Low bone density and large muscle mass predispose rabbits to femoral fractures. However, there are few reports describing treatment and prognosis. Two New Zealand White rabbits presented with unilateral left rear limb abduction and lateral rotation of the distal left rear limb 2 and 17 days after experimental surgery to create a "stair step" in the patellar groove of the left medial femoral chondyle. This procedure was performed after approval by the Institutional Animal Care and Use Committee. Radiography revealed a spiral oblique mid-shaft fracture of the left femur in both rabbits. Open fracture reduction was undertaken. Because of the presence of screws and Kirschner-wires in the medial femoral condyle, a lateral approach to surgical correction was chosen. Intramedullary fixation was used to reduce and stabilize the fractures. A 0.062" Kirschner wire was selected for the intramedullary device, because it was sufficiently flexible to allow easy passage into the femoral canal while being sufficiently stiff to promote reduction of the fracture. In addition, the ends of the fracture were secured with a 0.032" Kirschner cerclage wire to provide additional control of rotation and angulation. Then we assessed the range of motion of the knee joint to determine fracture stability and ensure that the hardware did not impinge on soft-tissue elements. After closure and application of sterile dressing, the hind legs were hobbled proximal to the hock by using elastic veterinary wrap in a figure-eight pattern to maintain limb alignment and prevent formation of pressure ulcers. Intraoperative fluoroscopic evaluation and postoperative radiographs confirmed fracture reduction. Bruising and seroma formation occurred at the surgical site, and transient anorexia developed. Rabbits were treated with fluids, analgesics, antibiotics, and fitted with Elizabethan collars. They were housed in isolation to limit excessive environmental stimulation, which could alarm them and provoke "thumping" of the rear legs. Muscular weakness and atrophy developed in the affected legs, but the fractures remained immobilized. Radiographs obtained 21 days after surgery confirmed marked callus formation and integrity of the implanted hardware. Four weeks after surgical fixation, both rabbits showed increased muscle development in the repaired leg and were ambulating normally. The long-term prognosis was excellent. These cases demonstrate that repair of femoral fractures in rabbits can be achieved by using basic orthopedic techniques and diligent post-operative management.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Femoral Fractures / therapy
  • Femoral Fractures / veterinary*
  • Femur / diagnostic imaging
  • Femur / injuries*
  • Fracture Fixation, Internal / veterinary
  • Fracture Healing / drug effects
  • Fracture Healing / physiology*
  • Hindlimb Suspension / physiology
  • Knee Joint / physiology
  • Knee Joint / surgery
  • Male
  • Postoperative Care / methods
  • Postoperative Care / veterinary*
  • Rabbits
  • Radiography
  • Range of Motion, Articular / physiology
  • Specific Pathogen-Free Organisms