Transport of volatile solutes through AQP1

J Physiol. 2002 Jul 1;542(Pt 1):17-29. doi: 10.1113/jphysiol.2002.023218.

Abstract

For almost a century it was generally assumed that the lipid phases of all biological membranes are freely permeable to gases. However, recent observations challenge this dogma. The apical membranes of epithelial cells exposed to hostile environments, such as gastric glands, have no demonstrable permeability to the gases CO2 and NH3. Additionally, the water channel protein aquaporin 1 (AQP1), expressed at high levels in erythrocytes, can increase membrane CO2 permeability when expressed in Xenopus oocytes. Similarly, nodulin-26, which is closely related to AQP1, can act as a conduit for NH3. A key question is whether aquaporins, which are abundant in virtually every tissue that transports O2 and CO2 at high levels, ever play a physiologically significant role in the transport of small volatile molecules. Preliminary data are consistent with the hypothesis that AQP1 enhances the reabsorption of HCO3- by the renal proximal tubule by increasing the CO2 permeability of the apical membrane. Other preliminary data on Xenopus oocytes heterologously expressing the electrogenic Na+-HCO3- cotransporter (NBC), AQP1 and carbonic anhydrases are consistent with the hypothesis that the macroscopic cotransport of Na+ plus two HCO3- occurs as NBC transports Na+ plus CO3(2-) and AQP1 transports CO2 and H2O. Although data - obtained on AQP1 reconstituted into liposomes or on materials from AQP1 knockout mice - appear inconsistent with the model that AQP1 mediates substantial CO2 transport in certain preparations, the existence of unstirred layers or perfusion-limited conditions may have masked the contribution of AQP1 to CO2 permeability.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Aquaporin 1
  • Aquaporins / chemistry
  • Aquaporins / metabolism*
  • Biological Transport / physiology
  • Blood Group Antigens
  • Carbon Dioxide / metabolism
  • Gases / metabolism*
  • Humans
  • Permeability
  • Water / metabolism

Substances

  • AQP1 protein, human
  • Aquaporins
  • Blood Group Antigens
  • Gases
  • Water
  • Carbon Dioxide
  • Aquaporin 1