Nuclear terrorism

Am J Med Sci. 2002 Jun;323(6):341-9. doi: 10.1097/00000441-200206000-00006.

Abstract

Recent events have heightened awareness of the potential for terrorist attacks employing nonconventional weaponry such as biological agents and radiation. Historically, the philosophy of nuclear risk has focused on global or strategic nuclear exchanges and the resulting damage from large-scale releases. Currently, nuclear accidents or terrorist attacks involving low-level or regional release of radiation are considered the most likely events. Thus far, there have been several regional radiation incidents exposing hundreds of thousands of people to radiation, but there have been only a limited number of significant contaminations resulting in death. There are several different types of radioactive particles that differ in mass, extent of radiation emitted, and the degree to which tissue penetration occurs. Radiation affects its toxicity on biological systems by ionization, which creates tissue damage by the generation of free radicals, disruption of chemical bonds, and directly damaging cellular DNA and enzymes. The extent of damage depends on the type of radioisotope and the radiation dose. Radiation doses exceeding 2 to 10 Gy are considered lethal. Optimal management of radiation casualties requires knowledge of the type and dose of radiation received, a recognition of the manifestations of radiation sickness, and the use of standard medical care, decontamination, and decorporation techniques.

Publication types

  • Review

MeSH terms

  • Humans
  • Nuclear Warfare*
  • Radioactive Fallout / adverse effects
  • Radioactive Fallout / prevention & control
  • Terrorism*

Substances

  • Radioactive Fallout