Genetic distances and ordination: the land snail Helix aspersa in north Africa as a test case

Syst Biol. 1998 Jun;47(2):208-27. doi: 10.1080/106351598260888.

Abstract

We examined the efficiencies of ordination methods in the treatment of gene frequency data at intraspecific level, using metric and nonmetric distance measures (Nei's and Rogers' genetic distances, chi 2 distance). We assessed initial processes responsible for the geographical distribution of the Mediterranean land snail Helix aspersa. Seventeen enzyme loci from 30 North African snail populations were considered in the present analysis. Five combinations of distance/multivariate analysis were compared: correspondence analysis (CA), nonmetric multidimensional scaling (NMDS) on Nei's, Rogers', and chi 2 distances, and principal coordinates analysis on Rogers' distances. Configuration of the objects resulting from ordination was projected onto three-dimensional graphics with the minimum spanning tree or the relative neighborhood graph superimposed. Pre- and postordination or clustering distance matrices were compared by means of correlation methods. As expected, all combinations led to a clear west versus east pattern of variation. However, the intraregional relationships and degree of connectivity between pairs of operational taxonomic units were not necessarily constant from one method to another. Ordination methods when applied with Nei's and Rogers' distances provided the best fit, with original distances (r = 0.98) compared with UPGMA clustering (r approximately 0.75). The Nei/NMDS combination seems to be a good compromise (distortion index dt = 10%) between Rogers/NMDS, which produces a more confusing pattern of differentiation (dt = 24%), and chi 2/CA, which tends to distort large distances (dt = 31%). NMDS obviously provides a powerful method to summarize relationships between populations, when neither hierarchical structure nor phylogenetic inference are required. These findings led the discussion on the good performance of NMDS, the appropriate distances to be used, and the potential application of this method to other types of allelic data (such as microsatellite loci) or data on nucleotide sequences of genes.

MeSH terms

  • Africa, Northern
  • Animals
  • Gene Frequency
  • Geography
  • Helix, Snails / classification
  • Helix, Snails / genetics*
  • Mediterranean Region
  • Models, Biological