An indication of magnetic-field-induced superconductivity in a bifunctional layered organic conductor, kappa-(BETS)(2)FeBr(4)

J Am Chem Soc. 2002 Jun 19;124(24):6816-7. doi: 10.1021/ja026067z.

Abstract

Hybrid systems consisting of the conducting layers of organic donor molecules and the magnetic layers of inorganic anions have been focused on as possible bifunctional materials, whose conducting properties can be tuned by controlling the magnetic state of the anion layers on an application of magnetic field. Here we report the magnetoresistance of the antiferromagnetic organic superconductor, kappa-(BETS)2FeBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene], consisting of the two-dimensional superconducting layers of the BETS semications and the insulating layers of the FeBr4- anions. Due to the metamagnetic nature of the Fe3+ spin system, characteristic resistivity decrease was observed just below the antiferromagnetic superconductor-to-ferromagnetic metal transition at 1.6 T. Furthermore, an indication of the onsets of the magnetic-field-induced superconductivity was discovered around 12.5 T.