Transient dynamics in metapopulation response to perturbation

Theor Popul Biol. 2002 May;61(3):285-95. doi: 10.1006/tpbi.2002.1586.

Abstract

Transient time in population dynamics refers to the time it takes for a population to return to population-dynamic equilibrium (or close to it) following a perturbation in the environment or in population size. Depending on the direction of the perturbation, transient time may either denote the time until extinction (or until the population has decreased to a lower equilibrium level), or the recovery time needed to reach a higher equilibrium level. In the metapopulation context, the length of the transient time is set by the interplay between population dynamics and landscape structure. Assuming a spatially realistic metapopulation model, we show that transient time is a product of four factors: the strength of the perturbation, the ratio between the metapopulation capacity of the landscape and a threshold value determined by the properties of the species, and the characteristic turnover rate of the species, adjusted by a factor depending on the structure of the habitat patch network. Transient time is longest following a large perturbation, for a species which is close to the threshold for persistence, for a species with slow turnover, and in a habitat patch network consisting of only a few dynamically important patches. We demonstrate that the essential behaviour of the n-dimensional spatially realistic Levins model is captured by the one-dimensional Levins model with appropriate parameter transformations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ecosystem*
  • Environment*
  • Models, Biological*
  • Population Density
  • Population Dynamics