Rototillage, disking, and subsequent irrigation: effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux

J Environ Qual. 2002 May-Jun;31(3):752-8.

Abstract

Spring and summer tillage are usually followed by irrigation before planting crops in California's summer-dry Mediterranean-type climate. Tillage treatments such as rototillage or disking are known to disturb the soil structure to different extents, but little is known about how the intensity of a tillage event and subsequent irrigation affect the microbial biomass, respiration, CO2 efflux, and mineral N of agricultural soils. We carried out an experiment with a Yolo silt loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent) with two tilled treatments (rototillage and disked and rolled) and a nontilled control. The soil was subsequently sampled throughout a 17-d period. Nine days after tillage, all treatments were lightly sprinkler-irrigated to bring the soil water potential above -10 kPa. After tillage, the soil ammonium and nitrate content increased rapidly relative to the control with highest increases in the disked soil. Mineral N remained higher in the tilled treatments after irrigation. Rototillage and disking increased the CO2 efflux of the soil within 24 h of the disturbance. The increase was higher in the disked soil, which was more than three times the CO2 efflux of the control soil at 0.25 h after tillage. This effect may be due to degassing of dissolved CO2 since microbial respiration did not increase in tilled soils. Irrigation increased the CO2 efflux of all treatments but this was most pronounced in the control soil, which had an order of magnitude increase in CO2 efflux after irrigation. An ancillary experiment carried out under similar conditions but with more frequent sampling showed that increases in CO2 efflux after irrigation were accompanied by increases in soil respiration. This study shows that different tillage implements affect CO2 efflux, nitrate accumulation, and microbial activity, and thus have different effects on soil and atmospheric environmental quality.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture / methods*
  • Biomass*
  • Carbon Dioxide / metabolism*
  • Humans
  • Nitrogen / metabolism*
  • Seasons
  • Soil / analysis*
  • Soil Microbiology*

Substances

  • Soil
  • Carbon Dioxide
  • Nitrogen