Equilibrium partitioning of chlorinated solvents in the vadose zone: low f(oc) geomedia

Environ Sci Technol. 2002 Apr 1;36(7):1613-9. doi: 10.1021/es010812a.

Abstract

A series of gas (vapor)-advecting water-unsaturated column experiments using a low organic content (f(oc)) silica sand was conducted to determine mass distributions of chlorinated-volatile hydrophobic organic compounds (C-VHOCs) in a natural sorbent system. C-VHOCs used were trichloroethene (TCE), tetrachloroethene (PCE), chlorobenzene (CB), and 1,3-dichlorobenzene (DCB). Four volumetric water contents (theta(w) = 0.07, 0.12, 0.17, 0.20) and several influent gas-phase C-VHOC (solute) concentrations were considered. The method of temporal first moments was applied to complete breakthrough curve data to determine total C-VHOC gas-phase retardation and associated gas-phase C-VHOC mass fraction. Results were compared to an equilibrium partitioning advective-dispersive formulation of total gas-phase retardation. Literature-derived values of Henry's law constants and independent measurements of gas/water interface areal extent and interface phase adsorption allowed quantification of C-VHOC mass fractions in the aqueous and gas/water interface phases. Unaccounted C-VHOC mass, derived from comparison of measured C-VHOC retardation to independent phase prediction, was attributed to solid-phase sorption. Results indicate that for all conditions tested, gas/water interfacial adsorption exhibited only a small effect on C-VHOC vapor retardation (accounting for < or = 10% of the total C-VHOC distributions). Solid-phase association was the dominant uptake mechanism, accounting for 46-91% of the total C-VHOC mass in the porous system. Evaluation of the solid-phase C-VHOC uptake results in terms of a modified form of the Dubinin-Radushkevich (DR) isotherm equation provided strong evidence supporting the mechanism of pore-filling in this natural, low f(oc) sorbent.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adsorption
  • Gases
  • Hydrocarbons, Chlorinated / chemistry*
  • Models, Theoretical*
  • Silicon Dioxide
  • Soil Pollutants / analysis*
  • Solvents / chemistry*
  • Volatilization
  • Water

Substances

  • Gases
  • Hydrocarbons, Chlorinated
  • Soil Pollutants
  • Solvents
  • Water
  • Silicon Dioxide