Effectiveness of simultaneous independent realizations at low carrier-to-noise ratio to improve heterodyne Doppler lidar performance. I. Theory and numerical simulations

Appl Opt. 2002 Apr 20;41(12):2232-9. doi: 10.1364/ao.41.002232.

Abstract

It is shown that the performance of heterodyne Doppler lidar (HDL) can be improved by (i) at least one good realization for every single shot or (ii) several simultaneous good realizations for accumulation. Until now, several simultaneous independent realizations at high carrier-to-noise ratio (CNR) have been considered. At low CNR, noise may have a detrimental effect on the accumulation techniques. We determine the chances of getting "heavy" speckles in HDL signals from many receiver-detector units on a single-shot basis and several good realizations on a single-shot basis, which is required for an effective accumulation. The use of multiple receiver-detector units at low CNR is worthwhile in contexts such as space lidar, where optimized treatment is at a premium. We conclude on the effectiveness of many receiver-detector units in parallel in order to achieve simultaneous independent realizations at low CNR to improve the performance of HDL on a statistical basis.