Ca2+ overload evokes a transient outward current in guinea-pig ventricular myocytes

Circ J. 2002 Jan;66(1):87-92. doi: 10.1253/circj.66.87.

Abstract

There are 2 types of transient outward currents (Ito) in the hearts of various mammals: a 4-aminopyridine (4-AP) sensitive K+ current and a 4-AP resistant Ca2+ activated current, carried by Cl-, (referred to as I(to1) and I(to2), respectively). However, the I(to) has been considered to be absent in guinea-pig ventricular myocytes and so this study tested the hypothesis that I(to1) is generally absent in guinea-pig ventricular myocytes, but I(to2) appears under the condition of Ca2+ overload. Membrane currents were recorded by the whole-cell patch-clamp technique and Ca2+ overload was achieved by adding internal, and eliminating external, Na+ with subsequent enhancement of Ca2+ influx via the Na+-Ca2+ exchange. Under physiological conditions, I(to) could not be elicited by 300 ms-test pulse from -70 mV to 0 mV (n=32). However, under Ca2+ overload, a biphasic current resulting from the overlap of the L-type Ca2+ channel current and Ito was elicited (n=38). This I(to) was resistant to 4-AP (3 mmol/L, n=30) but sensitive to both anthrancene-9-carboxylic acid (9-AC, 3 mmol/L, n=8) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (100 micromol/L, n=3). Replacing K+ with Cs+ on both sides of the membrane failed to abolish I(to) (n=38). I(to) disappeared by lowering the external Cl- (n=3). The amplitude of I(to) was dependent on that of the L-type Ca2+ channel current (n=4). Because Ca2+ release from the sarcoplasmic reticulum was prevented by caffeine (5 mmol/L), I(to) was negligible (n=6). These results suggest that I(to1) is absent, but Ca2+ overload evokes I(to2) in guinea-pig ventricular myocytes.

MeSH terms

  • 4-Aminopyridine / pharmacology
  • Animals
  • Calcium Signaling / physiology*
  • Guinea Pigs
  • Heart / physiology*
  • Heart Ventricles
  • In Vitro Techniques
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Potassium Channels / drug effects
  • Potassium Channels / physiology*
  • Time Factors
  • Ventricular Function / physiology*

Substances

  • Potassium Channels
  • 4-Aminopyridine