Misorientation distributions in hot deformed NaCl using electron backscattered diffraction

J Microsc. 2002 Mar;205(Pt 3):285-94.

Abstract

EBSD orientation mapping has been used to derive subgrain boundary misorientation distributions in a series of hot deformed and etched NaCl samples. The main objective of this study has been to examine the influence of data processing, noise caused by angular resolution limits and step size on the subgrain misorientation distributions in hot deformed NaCl. Processing of non-indexed EBSD patterns increased the average misorientations in etched NaCl. Noise contributed significantly to low angle misorientation peaks for step sizes less than the minimum subgrain size. Orientation data collected using a step size larger than the average subgrain size cumulated misorientations across individual subgrains and effectively measured an orientation gradient between steps. Orientation gradient distributions were not influenced by noise. Average misorientation values calculated from large step data correlated well with average misorientation from small step size data, Average misorientations showed a power law relationship with strain. Three types of substructures were identified using scanning electron microscopy and EBSD mapping, equiaxed subgrains, long subgrain boundaries and a core-mantle subgrain arrangement.